A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form

نویسندگان

چکیده

We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that support functions respect to fixed nonzero vector are linearly related. Our approach is based on suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypersurfaces of a Sasakian space form with recurrent shape operator

Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.

متن کامل

Willmore spacelike submanifolds in a Lorentzian space form

Let N p (c) be an (n+p)-dimensional connected Lorentzian space form of constant sectional curvature c and φ : M → N p (c) an n-dimensional spacelike submanifold in N p (c). The immersion φ : M → N p (c) is called a Willmore spacelike submanifold in N p (c) if it is a critical submanifold to the Willmore functional W (φ) = ∫

متن کامل

Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archivum mathematicum

سال: 2022

ISSN: ['0044-8753', '1212-5059']

DOI: https://doi.org/10.5817/am2022-3-169