A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form
نویسندگان
چکیده
We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that support functions respect to fixed nonzero vector are linearly related. Our approach is based on suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].
منابع مشابه
Hypersurfaces of a Sasakian space form with recurrent shape operator
Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملWillmore spacelike submanifolds in a Lorentzian space form
Let N p (c) be an (n+p)-dimensional connected Lorentzian space form of constant sectional curvature c and φ : M → N p (c) an n-dimensional spacelike submanifold in N p (c). The immersion φ : M → N p (c) is called a Willmore spacelike submanifold in N p (c) if it is a critical submanifold to the Willmore functional W (φ) = ∫
متن کاملSpacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b
We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archivum mathematicum
سال: 2022
ISSN: ['0044-8753', '1212-5059']
DOI: https://doi.org/10.5817/am2022-3-169